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curyanuii; GUIABTPALUOHHAA MOJeIb U Mogeau Nud(y3n0OHHOrO 3apakeHns IPeAJI0KeHO NCI0JIb30BaTh I
U3yYeHUA COCTOAHNA MHPOPMUPOBAHHOCTHU O0IeCcTBa O IyTAX pellleHNd IPo6JeM U JJid WX IIPUBJIEUYEHUA K
mpolieccy yIpaBJIeHUs; MOJeJb KJIETOYHOTO aBTOMATa IPEJJIOKEHO UCI0Jh30BaTh, KAK OOPATHYIO CBSA3b, HA
JTalle MOHUTOPHWHTA yOBJIETBOPEHHOCTH TPaKIAH COCTOSHUEM yIIpaBieHusA Teppuropueii. CresaH BBIBOZ O
BO3MOXKHOCTH HCIIOJB30BAHUA YKAa3aHHBIX MOJeJiell Ha Pa3JINYHBIX dTanax KOHI[EMI[UU.

KoaroueBble cioBa: NOBeJeHUYECKWE MOJEJNH, CaMOOPraHM3anusa oOImecTBa, WH(OPMAIMOHHOE IIPOCTPAHCTBO,

caMoyIlpaBJIeHVe TepPUTOPUU, NHMOPMAIIUA.
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THE CONCEPT OF BEHAVIORAL MODELS USE TO ANALYZE THE EFFECT OF INFORMATION’S
INFLUENCE ON THE PROCESSES OF SELF-ORGANIZATION IN THE TERRITORIAL COMMUNITY

Summary

The article realizes the concept of the analysis of the development and involving processes of self-organization
of the population to the management of socio-economic development of the territory. The concept generalizes
the processes of information interaction of "government«<ssociety” and allows to draw conclusions about the
mutual influence of these components of public administration in the territorial communities of the cities.
The management of the territory development is presented as cooperation in the work of the two components
of local governance: government and civil society bodies that represent the views and interests of the society.
Considerable attention is paid to information exchange between branches of government. The stages of
awareness of the problems of its origin and significance, the size of the problem, the solutions occur in the
informational space by information exchange between stakeholders in solving social actors, this exchange of
information may take several iterations of interaction. To explore the current condition and predict future
development of the territorial community, at various stages of interaction, in this paper we propose the use
of behavioral models, namely the model of Granovetter on the stage for the identification of the problem;
the Axelrod’s culture model at the stage of forecasting of development of problem situations; the cooperation
model of John von Neumann at the stage of decision making about alternative solutions to problem situations;
filtration model and the diffusion model of contamination proposed to be used for analyzing the state of
awareness of the ways of solving problems and for their involvement in the management process; cellular
automaton model is proposed to use, as feedback, on the stage of monitoring of satisfaction of citizens by the
state government of the territory.

Key words: behavioral models, self-organization of society, information space, government areas,
information.
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VALUE-AT-RISK AS A PRINCIPAL METHODOLOGY OF RISK ESTIMATION

The paper examines the current and historic literature to give an overview of various methodologies employed
to determine Value-at-Risk. The estimation methods Value-at Risk employed to determine the significance of
the fundamental variables P/E ratio and Debt/Equity ratio with regards to the Value-at-Risk model are given.
Key words: systematically important financial institution (SIFI), Price-to-Earnings (P/E), Debt/Equity,
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Introduction. One of the main tasks for the
researchers in the field of Finance remains the stock
returns predictability. Obviously, there is no sur-
prise in it, because a great portion of the academic
research focuses on practicality of the findings. In
finance the concept on capitalisation of knowledge
is nothing else but its essence. And that is precisely
why the practicality and accuracy of the modelling
are such a key aspects.

Value-at Risk is a tool that is employed primarily
in financial risk management as it can be classified
as a risk measure of the risk of a loss occurring in a
given timeframe on a specific portfolio of financial
assets. All of the including globally operating banks,
insurance companies and any other financial insti-
tution that enjoys the global interconnectivity to
the extent that its failure could trigger a financial
crises are indeed employing VaR as a risk measure-
ment tool in order to quantify the risk exposure to
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the market. This fact illustrates the extraordinary
significance of the VaR model. Yet, despite the sig-
nificance of the VaR tool and popularity amongst
financial practitioner the level of sophistication to
construct the VaR is far from high.

Aim. The aim is to determine if there is a mea-
surable relation between the two aforementioned
fundamentals and equity risk measured by Value-
at-Risk.

Literature review. In fact, the most employed
method to determine the VaR is through historic
simulation and Risk Matrics which gives raise to
limitations of the real world applicability of the tool.
It is hence the attempt of many academics to esti-
mate the VaR with a continuously increasing level of
sophistication, where most of the risk is explained
in an autoregressive manner such as the GARCH
model. However, recently the stream of research is
devoted to a more structural approach in which mar-
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ket and firm specific factors are incorporated into
the VaR model and this paper will be tied to this
stream by attempting to expose the functionality
of fundamental values such as P/E ratio and Debt/
Equity Leverage ratio in the VaR model. Research
conducted by Banz [1], Stattman [25], Rosengerg et
al. [23] and Fama and French [14] has yielded that
firm specific and market related variables can help
explain the expected stock returns.

Some academics consider the mean returns pre-
dictability like Cochrane [10], others work on the
volatility predictability, for instance, Dichev and
Tang [12], however all of them, basically, work
directly or indirectly with the problem of returns
distribution predictability as mean and variance
are only the moments of the distribution [19]. It is
worth mentioning for practicality purposes that the
mean returns and volatility, as one of the measures
of risk, go hand in hand in the eyes of practitio-
ners. In other words it is extremely important to be
able to predict, at least a good part of the variation,
of both of the variables. The reasoning behind it is
that practitioners will always want to understand
the risk/return ratio. Thus, the lack of robust fore-
casts for any of the two decreases the value of the
prediction immensely.

This piece of academic work is focused on adding
value to the risk predictability part of this research
stream. Therefore, it is important to highlight the
prime risk measures that might be used for the pur-
poses of predicting the equity returns. The first
approach is to go for the most straightforward mea-
sure of risk that is variance or standard deviation,
which are directly incorporated into the returns
distribution. The other approach that appeared in
the academic literature is to create more complex
measures of risk that may give better predictabil-
ity options. Probably, there was a good reason for
the approach to appear, for example, it may be the
case that the variance/standard deviation models
were not progressing in terms of the predictabil-
ity. One of those measures is Value-at-Risk (VaR)
that stands in line with other sophistications, such
as: Expected Shortfall, which is a conditional VaR
model well presented in the work by Rockafellar and
Uryasev [22], Tail Conditional Expectation or Tail
VaR, which was described in the paper by Barges,
Cassette and Marceau [2], Entropic Risk Measures,
which are based upon the risk aversion coefficients
and touched upon by Rudloff, Sass and Wunderlich
[24], etc. Furthermore, it is useful to mention,
that the Basel Committee of Banking Supervision
[3] imposed a regulatory requirement (contained in
Basel II Accord) for financial institutions to use VaR
figures and even designed a specific “three colour
scheme” to test them.

Cristoffersen describes in detail several VaR mod-
els as well as specifies the main advantages of using
VaR, such as the ease in calculation and applicabil-
ity to market conditions [9]. The market conditions
are also explicitly explained in his research, they
are: almost no conditional mean predictability on
the daily basis, the variance of daily returns greatly
exceeds the mean, daily returns are not normally
distributed, time-varying correlation between assets,
etc. It is vital to understand that for any VaR model,
which basically estimates the distribution quantiles,
the estimation of the returns distribution is needed.
The only exception is the regression quantile method
highlighted by Chernozhukov and Umatsev [7] and
Engle and Manganelli [13], where they estimate the
quantile directly. The rest of the models do actually
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estimate the returns distribution. Those approaches
may be classified as follows: Historical Simulation
introduced by Boudoukh et al. [5], which estimates
the empirical quantile from the empirical returns
distribution based on past data; Fully parametric
methods, which model the complete returns distri-
bution, such as RiskMetrics [21] and GARCH from
Bollerslev [4]; Semi-parametric models, which incor-
porate the empirical distribution partly and the rest
is modelled using the parametric tools, for example,
the Extreme Value Theory (EVT) by McNeil and
Frey [18]. On top of that various types of filtering
may be used in the modelling, for instance, Filtered
Historical Simulation (FHS) with the residual fil-
tering using a GARCH type model or the filtered
parametric VaR used by Chavez-Demoulin et al. [6].

Furthermore, the researchescreated a substantial
support for the firm specific (or fundamental) and
market specific variables are important to predict
the equity returns distribution. From this point
onwards academics created another sub-stream of
research by introducing fundamental and market
variables into the VaR models.

Consequently, there is a need for further research
of the fundamental and market variables power with
respect to better VaR estimations. To the best of our
knowledge the fundamental and market variables
were not assessed with respect to the VaR models
performance. Thus, there is a substantial field for
further research in this area.

Value-atRiskMethodology.

1. Portfolio formation

The first step in estimating the value of such
fundamental variables as the P/E ratio and the
leverage ratio for the calculation of VaR is to form
the appropriate portfolios. These portfolios are
made in a way to compare the fit of a VaR model for
the overall portfolio and for a sorted portfolio with
high and low P/E or high and low leverage ratio
stock. That procedure is called back testing and it
will be described in further sections. Therefore, a
good approach towards back testing may be dividing
a ranked portfolio into percentile parts and testing
the VaR model across the parts and the overall port-
folio separately. The main issue at this stage is the
ranking methodology. In this study two different
ranking methodologies are applied to benefit from
the pros of both of them. The rankings are: percen-
tile ranking and simple (usual) ranking.

2. Ranking procedure

The ranking procedure is applied in this academic
work to actually distinguish between the high and
low P/E ratio or high and low leverage ratio stocks
following by the formation of separate portfolios
accordingly. The portfolios are created for the top
and bottom 25% quartiles P/E and leverage ratio
firms to represent a high and low P/E and leverage
portfolios, respectively.

a. Simple ranking

The simple ranking methodology is based upon
sorting the stocks according to the fundamental
variable value assigning the highest rank (1) to the
stock with the highest fundamental variable value
and the lowest rank (e.g. 101) to the stock with the
lowest one. This process is carried out daily, which
results in every stock in every time t getting the
rank according to its fundamental variable value
at that time in comparison with the same values of
other stocks in the portfolio at the same time t.

b. Percentile ranking

In the percentile ranking the values for the fun-
damental variable (P/E or leverage ratio) are cal-
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culated for every stock at each point in time first.
Then every stock is assigned a percentage quartile,
in which its fundamental variable is across the time
t using the formula below:

ts _ thin
%Rank; = * 100 1)

thax _ thin ’

where, the % Rank/ is, essentially, the percentile
rank for the stock s at time t, the F? is the value of
the fundamental variable for the stock s at time t
and F™/F ™" are the maximum and minimum val-
ues of the fundamental variable of all the stocks
at time t, respectively. That basically estimates in
which percentage quartile across all the stocks in
the portfolio lies the fundamental variable value for
each individual time t.

3. VaR estimation methods used

The Value-at-Risk itself, which is usually speci-
fied as 100a% VaR, stands for the negative of the
quartile of probability 1-a of the returns distri-
bution. The values of the probability o may vary
between 0 and 100%, however, usually they are in
the range from 95% to 99% . In some special cases it
can also be set to 99.9%, for example, as the Basel
II Accord requires for operational risk. Thus, the
1000% VaR for the period t+k conditionally on the
information set ®t, that is available at time t, is
estimated as:

VaRf, = —Q1-a(Re4+x10;) =
—inf{r € P(Reyk £7|0p) 21— a}, (2)
where Q () represents the quantile of probability
a, R, stands for the random variable of returns at
time t, ©, is the information set available at time
t. The whole VaR estimation methodology is about
estimating the appropriate quantile of an unknown
returns distribution. Furthermore, as it can be seen
from the formula, VaR is an absolute term that rep-
resents effectively the most possible amount one will
loose on a portfolio with a certain probability.
Generally, the returns are assumed to be a loca-
tion scale process conditional on the set of available
information at time t as it is shown in the next
formula:

Terk = EReqic|Op) + €r4k = Besk + OtaiZes>  (3)
where p,,, and o, are the expected return and
the conditional scale, respectively, for the period
t+k given the information set O, available at time
t, €., is an error term and z_, has a unit scale, zero
location and a probability density function f (). The
100a% VaR forecast for the time t+k conditional on
the information set available at time t may be esti-
mated using the formula below:

VaR{, = —(Usk + 0t41Q1-a(2)), 4)
where Q_ is defined as the quantile of the prob-
ability density function f ().

The main differences that vary throughout the
VaR models are the specifications for the three
parameters: conditional location, conditional scale
and the probability density function or p,,,c,,, and
F,(), respectively.

4. Historical Simulation VaR model

The most basic method to use for VaR estimation
is the Historical Simulation model. It incorporates
the usage of the empirical quantiles of the returns
distribution. According to Kuester et. al [16] it is
defined as naive historical simulation. The author
justifies the employability of the method by assuming
the stationarity of returns distribution, what implies
that the empirical distribution is a consistent estima-
tor of the unobserved future distribution.

t+k

Firstly, it is important to obtain the ordered sta-
tistics, which is just an ordered sample of returns.
If we consider the sample of returns (r,, r, ..., T, . ,)>
the ordered statistic will be (r(l), T gppseees r(m)), where
rS TpSe.< T Then the historical simulation
l(an% VaR estimator for period t+1 is defined as:

VaR{,, = _Ql—a(rt,rt—l' --"rt—ou+1) = —Trqa-aswl) (5)
where the expression in the square brackets
stands for the integer part of the real number. For
instance, if the sample size ®=100, the 90% VaR
estimate is the negative of the 10" sample statistic:
VaRy}, = —Tao).

The simplicity of the historical simulation
method brings up concerns about its performance.
Further analysis of the weaknesses of this model and
possible improvements was made by Pritsker [20].

5. Unconditional Parametric VaR model

The Unconditional Parametric VaR is a fully
parametric method. That means that it assumes
a family of probability distributions f(z) of z, in
Eq. (2). The model is called unconditional because
it makes the assumption that the expected return
and the scale are not changing along the timeframe:
B, =p and o, =c. Consequently, the probability den-
sity function of the returns is f(c'(r,—11)). There-
fore, the unconditional estimator of the 1000% VaR
at time t takes the values of:

VaR,, = —(u+00:1-4(2)), (6)
In other words the distribution of Z is adjusted
for location and scale followed by the VaR estima-

tion as the 1-o quantile of that distribution. The
quantile of z is estimated as follows:
Qi-«(2) =F7'(1 - a), (7

where F, stands for the cumulative distribution
function corresponding to the . Usually a continu-
ous distribution function is used for F, correspond-
ing to the family of f, however if F, is not a con-
tinuous function the generalized inverse function
may be used instead of the F,'. The distribution
of Z is assumed to be Normal or Student-t in this
piece of academic work. A lot of researchers such as
Mandelbrot (2005) argue in favour of non-symmet-
ric returns distribution. They state that the returns
distribution has a mean close to zero, negative skew-
ness and excess kurtosis. Regardless, in this study
we shall account for kurtosis and skewness using
a symmetric distribution with the Modified VaR
model later on, what will allow us to deal with this
kind of counterargument.

6. Modified VaR model

The Modified VaR (MVaR) is a method devel-
oped by Favre and Galeano (2002) on the basis of
the normal VaR method. This method includes the
property to adjust the risk, measured by volatility,
for skewness and kurtosis of the empirical returns
distribution, which gives the advantage of dealing
with non-symmetric distributions.

Modified VaR is considered to be an extension to
a simple unconditional parametric model. The for-
mula for calculating MVaR is as follows:

1
MVaR, = pu+ zt+g(zt2 -1DS+

1 o 1 3 2
+ ﬁ(zt —3z)K — %(Zzt —5z2,)S ]0, 8)

where S and K stand for the skewness and the
excess kurtosis of the distribution, z, is defined as
the distance between the returns and their mean in
terms of the number of standard deviations. Never-
theless as the higher moments do in fact exist, the
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MVaR model accounts for more of them in compar-
ison to the usual Unconditional Parametric model
and that, clearly, gives a much better estimation for
the distribution.

7. Conditional Parametric VaR model

The Conditional Parametric model is different
from an unconditional one because of the time vary-
ing location and scale (1 and ¢ from Eq. (2).

In this research the Conditional Parametric model
considers a mean function of the past information.
This function is an ARMA (p,q) process model as
follows:

14 q
=R Y G+ ) Gy, (9)
i=1 j=

j=1
where the equations ¢(z) = 1 — ¢,z — .. — ¢ z°
and ©(z) =1 -0,z — ... — G) z4 do not have common
roots as well as nelther of the roots is inside the
unit circle.
The function for the varying scale parameter
used in this academic work follows the GARCH(r,s)

rocess:
p T S
2 _ 2 2
of =¢C, + Z Ci€r_; t+ Z d]-at_]- ,
i=1 j=1

where ¢ > 0, ¢, > 0 and dj > 0 as it was considered
by Bollerslev [4].

8. Testing the fit of VaR models

For the purposes of comparison of the different
VaR methods used in this paper, the methods are
applied to a rolling window of observations of size
. Consequently, the out-of-sample VaR estimates
{var},_,,, , are calculated. The subsequent step is
to measure the quality of those forecasts, what is
done by comparing the ex-ante Value-at-Risk fore-
casts with the ex post realised returns. As it was
mentioned before, this procedure is called backtest-
ing. This academic study follows the backtesting
procedure described by Christoffersen [8].

Firstly, the number of violations is defined as
the number of times when the return loses exceeds
the corresponding VaR forecasts. The model is sup-
posed to be a good fit if the difference between the
actual portion of losses is lower than the forecasted
VaR value and the forecasted VaR probability 1-a
is lower.

Secondly, introducing the sequence of VaR fore-
casts as {VaRf},_ ., . and a sequence of realised
returns as {r},_  there is a need to calculate the
hit sequence {I }: 1.7 0f VaR violations, where:

I _ 1 lf Tt < _VaRt,
t— {0 if .= —VaR,.

The important assumption made here is that the
VaR violations are uniformly distributed and inde-
pendent throughout the sample. This assumption is
made to support the fact that I, will follow the Ber-
noulli distribution with parameter (1-a). Moreover,
o will vary from 95% to 99% in the vast majority
of cases depending on the required confidence level.

9. Testing the unconditional coverage

The easiest way to test the fit of the VaR model
having the hit sequence is to test the difference
between number of hits and the required number
of hits by the probability (1-a) of the VaR forecast
model. Basically, it is the unconditional coverage
test.

This process starts with denoting the number
of ones and zeros in the hit sequence by T, and T,
respectively. The total number of observations is
made equal to T. Following by the estimation of the

(10)

(11)
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violations ratio =T, /T. Afterwards the likelihood
ratio test is:

LRyc = —2In[L(1 — a)/L(R)], (12)

where L() stands for the likelihood function of
an iid Bernoulli sequence. By replacing that with
an appropriate function the likelihood ratio test

becomes:
alo(1—a)™

LRyc =—2In
e (1 —1y/T)™ (1y/T)"
which is asymptotically distributed with a chi-
square distribution with 1 degree of freedom.

10. Testing the independence of the violation

The problem with unconditional coverage test is
that it does not test the frequency of the violations
within the period. It means that for a given level of
a of a VaR setting the unconditional coverage will
just compare the total number of violations with the
expected one, but will not go into further details, i.e.
how the violations were distributed within the sam-
ple. That is an important issue to investigate because
of the proven presence of volatility clustering. For
example, the occurrence of violations subsequently
within a short timeframe delivers a much higher risk
to an institution than the same number of violations
during a longer timeframe. Consequently, there is a
strong requirement to test for the independence of
violations or, in other word, to test whether the like-
lihood of a violation is changing given the informa-
tion of past violations. Furthermore, if one would
take a broader look at the volatility clustering issue
it would become clear that this issue brings a huge
systemic risk for the regulators to deal with.

The test for the independence of VaR violations
follows the methodology employed by Christoffer-
sen [8], where the author assumes, under the depen-
dence of violations, that the hit sequence may be
described by a first-order Markov process with tran-
sition probability matrix:

e xi, 13)

—To1 To1
n [ ] : (14)
Pl oy
where n,, and n, are the probabilities that the

next observation of the return is going to be a vio-
lation given that current observation of the return
violated or not.

Introducing the sample size of T, the likelihood
function of the first-order Markov process is:

L(ITy) = (1 — my;)T0omg 01 (1 — mq 1) Moy 11, (15)

where T, is the number of observations in the
hit sequence of a violation, if i=1, or with no viola-
tion, if i=0, that precedes a V1olat10n if j=1, or a no
violation value, if j=0. Thus, the maximum likeli-
hood estimates of the transition probabilities are as
follows:

~ N Ty,

g1 = TontTos and 711 = Tro+ T1p" (16) and (17)
There is a possibility that for some sample of

returns the value of T.. may be zero. This scenario

will lead to a 11ke11hoo&1funct10n
L(TTy) = (1 — gy) ooy ™. (18)
The null hypothesis of the test for independence
of the violations is =, = 1, which will give a
transition matrix as tfle follllowmg
A [1 -7 n] (19)
where i = T,/T is the estimator for the ratio of
violations in the same way it was in the uncondi-

tional coverage test. In the scenario of independence
the likelihood function is:
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L(ﬁ) = (1 — f)Too+tTrof3Tor+T1a | (20)
Therefore, the likelihood ratio for a null hypoth-
esis m,, = m,, is given by:
LRing = —2In[L(M)/L(TL)] & F.  (21)
In addition, it is worth mentioning that this like-
lihood ratio has an asymptotic chi-square distribu-
tion with 1 degree of freedom.
11. Testing the conditional coverage
Both the unconditional coverage test and the test
for independence of the violations are important in
order to measure the fit of the VaR model. Thus,
a joint test should be executed. Following the pro-
cedure of Christoffersen [8] to simultaneously test
whether the violations occur independently and
whether the model predicts them correctly, the null
hypothesis for the test is given by: n,, =n,, =1 —a.
The academic employs the likelihood ratio test as:
LRec = —2In[L(1 - a)/L(T)] & X3,  (22)
which follows the asymptotic chi-square distri-
bution with two degrees of freedom. The value of
L(1 — o) are exactly the same as the ones used in
the Eq. (12). Using simple transformation it can be
shown that:
LRCC = LRUC + LRind. (23)
The likelihood ratio for the conditional coverage
test is nothing more than the sum of the likelihood
ratio for the unconditional coverage test plus the
likelihood ratio for the independence of the viola-
tions test.
12. The three color scheme from Basel 11
In the real world there are official classifications
of the VaR models. The Basel Committee on Banking
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Supervision [3] developed a so-called “three color
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VaR models are supposed to be disputable and the
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the number of violations that falls into higher than
99.99% quantile of the above mentioned distribu-
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Conclusion. The 1000% VaR provides a value
such that the probability of observing a loss greater
than VaR is smaller the confidence level 1-a for a
given timeframe, where the time frame can vary
from very frequent such of one day for example and
up to 10 days in other cases for market risk and
up to one year for credit risk or operational risk.
In essence the VaR gives an indication of the tails
of the profit/loss distribution bell-shaped curve. In
probabilistic terms this may seem quite trivial as it
is merely the negative of the 1- o probability quan-
tile of the returns distribution; however in practice
because of this definition the actual estimation of
VaR becomes quite sophisticated.According to our
findings, introduction of P/E and Debt/Equity
ratios as the basis for ranking yields further accu-
racy for the risk estimation.
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IIerpamko O. II.
KuiBchKuit HallioHaIbHUN €KOHOMIUHUI YHIBEPCUTET

VALUE-AT-RISK JIK OCHOBHA METOAOAOITA OLUIHKM PU3MKIB

Pezrome

Y craTTi mpeacTaBiIeHO KOPOTKUIT OTJIAL METOHOJIOrii, sika 3aCTOCOBYeThCA mys ominku Value-at Risk. Hase-
IeHo Ta mpoaHaaizoBaHo meroxu ominku Value-at Risk, 110 BUKOpHUCTOBYIOTBCA [Jisi BUSHAUEHHS 3HAUYIIOCTI
dyunamentanpHux 3MiHHUX Price-to-Earnings (P/E) iDebt/Equity mo BigHomenuio no mogeni Value-at-Risk.
KumarouoBi cioBa: cucremuo-BakauBuit dinancosuii incruryr (CB®I), Price-to-Earnings (P/E), Debt/Equity,
Value-atRisk (VaR), mporeaypa paHKyBaHHs, (piHAHCOBUH PUBUK-MEHEIKMEHT

ITerpamko A. II.
Kuesckuii HaI.U/IOHaJIBHBIﬁ 9KOHOMUYECKUIT YHUBEPCUTET

VALUE-AT-RISK KAK OCHOBHAS METOAOAOI'M OUEHKM PMCKOB

Pezrome

B crartbe mpezcTaBiieH KpaTKH 0030p METOHOJIOTHMH, KOTOpas MpuMeHseTcs mjis omeHku Value-at Risk.
IIpencraBieHbl M IpoaHAJM3UPOBAHBI MeToAbl oneHKHN Value-at Risk, KoTopble mcmosb3yioTcs IJis ompenesie-
HUSA 3HAUMMOCTUA (PyHIaMeHTAJbHBIX IlepeMeHHBIX Price-to-Earnings (P/E) iDebt/Equity mo oTHoieHuio
mogenu Value-at Risk.

KaroueBble croBa: cucTeMHO-BaKHBIHM (puHAHCOBBIN nHCTUTYT (CBPU), Price-to-Earnings (P/E), Debt/Equity,
Value-atRisk (VaR), npoueaypa pau:xupoBanus, (UHAHCOBBINA PUCK-MEHEIKMEHT.
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